
Computer
Programming
and Game
Design with
Scratch

2

What is Computer
Programming?
Computer programming is the process of writing instructions to be
carried out by a computer.
Your computer and all of the websites you visit, your phone and
all the apps you use, and any video games you play are all made
possible by computer programming.
Computer programming is also the driving force behind many of
the world’s current technological advancements, including artificial
intelligence, autonomous vehicles, and virtual reality.

Just like a game designer, computer programmers constantly move
through a cycle of prototyping, testing, and tinkering with their
programs. This is often called the engineering design process. This
process is used throughout engineering, science, and design-related
fields and exists in several different versions. Here are a version from
NASA as well as the Game Design Cycle you used in earlier:

Reflect Brainstorm

Prototype

Playtest

Iterate

3

What is Scratch?
There are many different programming languages. Some of the
most popular programming languages include Python, JavaScript,
and C++. We are going to use a language called Scratch to learn the
basics of programming and game design.

Scratch is a toolkit that combines computer programming with
graphic design tools to allow users to create games, animations, and
other interactive programs.

Go to Scratch at scratch.mit.edu. Click on “Create” in the top-left
corner to access the project editor.

mailto:scratch.mit.edu?subject=

4

The Scratch Project Editor

Stage - Here you will see the
output of your project as you’re
building it

Sprite Menu - Sprites are all
characters and objects in our
projects. Here you can control
what sprites are in your project,
and the name, position, visibility,
and size of those sprites. Add
more sprites by clicking on the
blue circle with the cat face in
the bottom-right of the menu.

Backdrop Menu - Backdrops are
backgrounds for our projects.
Add and manage backgrounds
here. Add a new backdrop by
clicking on the blue circle with
the mountains at the bottom of
the menu.

Tool Select Tabs - Choose
between Code, Costumes,
and Sounds tools. Switching
between these tabs will change
what tools are available in the
sections below.

Block Palette - Here you
can see all of the available
code blocks. Code blocks are
separated into color-coded
categories, like Motion, Events,
Sound etc...

Coding workspace - Here
you can write your programs
by connecting blocks from
the block palette. Note that
each sprite will have its own
programs.

View Options - Here you can
switch between different view
modes for the project editor.

Backpack - The backpack allows
you to transfer code, sprites
and backdrops between Scratch
projects.

Project Options - Here you can
save your project, add a title,
share your project (which makes
it public), change the language,
and other options.

Account Options - Here you can
access your other projects and
other account settings.

The Scratch project editor is where all of our coding,
designing, and creating will take place.

5

Code Blocks

There are currently 119 different blocks in Scratch, divided into 8 categories: Motion, Looks, Sound,
Events, Control, Sensing, Operators, and Variables. We will introduce blocks as they come up in our
code, but it is very helpful to spend some time looking through the categories and familiarizing yourself
with the different available blocks. Understanding the different tools at your disposal is crucial to being
an effective programmer! Visit the Scratch Wiki blocks guide for detailed information about all of the
different types of blocks and how they work together.

Here are some general tips for working with Scratch’s code blocks:

Block shapes - Pay attention to the shapes of blocks and different blocks connect to one another. A
block’s shape will tell you about how it is to be used in a program and how it will work with other blocks.

In Scratch, programs are written by connecting the colored code
blocks. To start building programs, drag blocks from the block
palette into the coding workspace in the center of the project editor..

mailto:https://en.scratch-wiki.info/wiki/Blocks?subject=

6

Code Blocks (CONTINUED)

Dropdown Options - Some blocks contain a small white dropdown arrow. Additional options can be
selected for these blocks . Just click on the arrow to expose the menu, and select your option.

Numbers and Text - In any blocks containing numbers or text inside a white space, these numbers
or text can be edited to any value you want! Just click on the text inside the block, delete it, and write
whatever you want in its place.

7

Remixing

To remix another user’s project, go to the project
page and click “Remix”.

This will save a copy of the project to your
account and open it in the project editor.

Scratch, in addition to being a programming language and toolkit, is
a community of programmers and creators. You can view and play
with projects from other users by going to the Scratch homepage and
clicking “Explore”. One key feature in Scratch is the ability to Remix
others’ projects. Remixing allows you to add to or change another
user’s project. When you remix another user’s project, you save a
copy of the project to your own account, so changes you make will
not change the original project.

8

Remixing (CONTINUED)

Remixing and looking inside other’s projects is a
great way to learn new programming and game
design techniques!

Tinker Away: It’s easy to be
overwhelmed when first looking at
the code in another user’s project. As
you begin reading through a project’s
code, one easy way to start feeling
understanding the code is to change
values and numbers that appear in
different blocks and see how they
affect the game. Just remember to
keep track of what you’re changing in
case it breaks the game.

Tips for Remixing Scratch Projects

9

Remixing (CONTINUED)

Changing Sprites: If you want to change a sprite without changing its code, do this by adding
a new costume to the sprite. To do this, click on the sprite in the sprite menu, then click on
the “Costumes” tab, and on the “Choose a Costume” button in the bottom left. Choose the
sprite you want to replace your current sprite.

After you
pick a new
costume, you
can delete
the original
costume by
selecting the
costume and
clicking on the
trash can in
the top-right
corner of the
costume.

You can also re-name your
sprite in the sprite menu.

10

Project #1: Dungeon Maze
For our first
project, we will
build a dungeon
maze game!
You can see
(and remix) my
version here.

New Blocks Used

From events
Triggers any attached blocks when the
green flag above the stage is clicked

From events
Triggers any attached blocks when the
specified key is pressed.

From events
Triggers any attached blocks when the
backdrop is switched to the specified one

From motion
Moves the sprite the specified number of
steps (pixels)

mailto:https://scratch.mit.edu/projects/456853292/?subject=

11

From motion
Points the sprite in the specified direction,
where 90 degrees points to the right

From motion
Sets the rotation style of the sprite, which
determines how a sprite will rotate and flip

From motion
Send the sprite to a specific X, Y position
on the stage

From motion
Make a sprite glide to a specific X, Y
position in the specified amount of time

From control
Checks a condition from the top of the
block. If the condition is true, the blocks
inside it will activate.

From control
Repeats any inside blocks forever

From control
Stops all or some pieces of code from
running

From sensing
Checks if sprite is touching a specific color

New Blocks Used (CONTINUED)

Project #1: Dungeon Maze (CONTINUED)

12

From sensing
Checks if sprite is touching the mouse
pointer or another sprite

From operators
Checks if either condition is true

From looks
Switches to the next backdrop

From looks
Switches to the next costume

From looks
Makes a sprite invisible

From looks
Makes a sprite visible

New Blocks Used (CONTINUED)

Phase 1: Basic Movement
In this first phase, we will begin our project by picking our player sprite and
programming basic four directional movement using event and motion blocks.

1. New project: Open a new Scratch
project by going to scratch.mit.edu,
signing into your account, and clicking
“Create” in the top left corner.

Project #1: Dungeon Maze (CONTINUED)

mailto:https://scratch.mit.edu/?subject=

13

Choose your player sprite: Click
on the “Choose A Sprite” button
in the bottom right corner of the
sprite menu. This will launch the
sprite library.

Start coding: Our basic movement script will consist of 3 blocks.
Start with the “when space key pressed” block from events. Drag this block into the coding
workspace and use the dropdown arrow to modify this block so it uses the right arrow instead of
the space key.

Note: In Scratch, our programs will almost always start with a block from the events category.
Notice how their curved tops will not allow any blocks to be connected above them.

Next, go to the motion category and connect a “point in direction 90”
block and a “move 10 steps” block.

2.

3.

For this project we will use the
mouse sprite as our player.
You can change this to a
different sprite later if you like.

Once you choose your sprite, you can
delete the original cat sprite by clicking
on the trash can in the top-right corner
of the sprite thumbnail. This should leave
you with only your new sprite.

Project #1: Dungeon Maze (CONTINUED)

14

All four directions: Repeat the above block of code for the other three directions.

Note: You can copy a chunk of code by right-clicking (control+click) on the top block in
the chunk, and selecting “duplicate”.

For each direction (right, left, up, down), change the “when space key pressed” and
“point in direction 90” blocks to the correct direction. Make sure your numbers/
directions match the combinations below:

Bonus: Click on the
“Costumes” tab near the
top left of the screen. If
your sprite has multiple
costumes that can be
used to show a walking
animation, try adding a
“next costume” block
from the looks category
to the end each of your
four directions. This will
only work well for specific
sprites.

Now you should be
able to move your
sprite in all four
directions! Try this
using your arrow
keys.

This will restrict
your sprite to only
rotate horizontally,
not vertically.

4.

5.

If moving your sprite left
causes your sprite to flip
upside down, add the following
code to keep your sprite from
flipping upside down:

Project #1: Dungeon Maze (CONTINUED)

15

Title and save: On the top of the screen, add a title to your project. Then look for the
words “Save Now” next to the picture of a folder near the top-right corner of the screen.
If you do not see these words, that means your project has already been saved!

6.

Phase 2: Create a Backdrop
Now that we’ve programmed basic four directional movement for our sprite, it’s
time to build our maze. We will do this by painting a new backdrop.

1. Open the paint tool: Hover over the
“Choose a Backdrop” button on the
bottom-right corner of the screen
and click on the paintbrush icon to
begin painting a new backdrop.

Paint your maze: Create a simple
maze for your game. Keep it simple!
We will make more levels later that
can be more difficult. Be sure to leave
a wide path and a clear entrance and
exit for your maze.

Use the rectangle and line tools to
create shapes, and then the cursor
tool to adjust the size and position of
the shapes.

2.

Project #1: Dungeon Maze (CONTINUED)

16

Choose a goal: Choose a sprite to be
the goal at the end of the maze. Click
on the “Choose A Sprite” button on
the bottom-right of the screen and
choose a sprite from the library. For
now, we will use the Cheesy Puffs
sprite for this.

Save your project. In the top-left of your screen, click File > Save Now just to be sure.

3.

4.

Place your cheesy
puffs at the end of
your maze. Make
them smaller
by finding the
size field in the
sprite menu and
changing the
number to 50.

Phase 3: Set the Rules
Now we will program some of the rules of our game.
The basic rules will include the following:

• The player starts at the beginning of the maze and must walk to the end of the maze using
their arrow keys.

• If the play touches a wal, they must go back to the beginning of the maze.

• When a player reaches the end of the maze, they may continue on to the next level.

Project #1: Dungeon Maze (CONTINUED)

17

Resize your sprite: Your mouse is
likely too large to make it through
your maze. Make your sprite
smaller by finding the size field and
changing the number to 50.

The Green Flag: The “when green flag clicked” block from events is often used as a start
button for Scratch games. The green flag in this block refers to the green flag just above the
stage. When the green flag above the stage is clicked, any blocks connected to the “when
green flag clicked” block will be triggered. The red stop sign next to the green flag can be
used to stop your program at any time.

1.

2.

Project #1: Dungeon Maze (CONTINUED)

18

X and Y coordinates: To set
the starting position for the
mouse, we will need to use X
and Y coordinates to describe
where the sprite should begin.
X and Y coordinates are a
common way to describe
position in any digital design
tools you may use. Here is a
diagram that shows how X
and Y values are measured in
Scratch.

Set starting position: We will now
set the starting position of our
player sprite. First, drag your player
sprite to the beginning of your
maze. This piece of code will start
with a “when green flag clicked”
block from events. Then, connect a
“go to x_ y_” block and a “point in
direction 90” block from motion.

3.

4.

Origin - The origin is the point where both X and Y equal
0. All coordinates will be measured from this point. In
Scratch, the origin is in the center of the stage.

X Coordinate - Describes an object’s horizontal position
left or right of the origin.
Y Coordinate - Describes an object’s vertical position
above or below the origin.

Note that you can see the X and Y coordinates of any
sprite at any time by selecting that sprite and looking in
the X and Y fields in the sprite menu.

Press the green flag and
see if your sprite goes to the
beginning of the maze. If
not, place your player sprite
at the sprite of the maze,
and copy the coordinates
from the X and Y fields on
the sprite menu.

Project #1: Dungeon Maze (CONTINUED)

19

Program the walls: Right
now, our mouse can walk
right through the walls. We
are going to write a program
that makes the mouse
return to the beginning of
the maze when it touches a
wall. To do this, we will use
an “if _ then _” block from
control.

Try it out: Try running your mouse into a wall. Does it send your sprite back to
the beginning like it’s supposed to? Save your project here before moving on.

The “if_ then_” block is one of
the most important blocks in
Scratch, and is a widely used
idea throughout other computer
programming languages. This
block will cause a specific
outcome to occur if a condition is
met. In this case, our statement
will say something like:

“If the mouse touches the wall,
then the mouse goes back to the
beginning of the maze.”

To set the color we are checking
for in the “touching color”
block, first click the colored
circle inside the block. When the
color menu pops up, click the
dropper icon at the bottom.

This will darken the entire
screen except for the stage. Now
bring your cursor to the stage
and click on the color that you
want to sense. In our case, this
is whatever color your walls are.

Now, place another “go to X_
Y_” and “point in direction”
block from motion inside the
“then” portion of the “if_
then_” block. Make sure the
X and Y coordinates match the
coordinates of your starting
position. You can now add this
code to the code that sets the
starting position.

5.

6.

We can achieve this by using the “touching color_”
block from sensing. Notice how this block’s shape
allows it to fit directly into the hexagon hole at the
top of the “if _ then_” block.

Unfortunately, the above code will not fully work yet. As written,
the above code will only check to see if we’re touching the wall
one time, at the very instant that the green flag is clicked. In order
to repeatedly check this, we need to add a loop around our “if_
then_” block. For this, we can use a “forever” block from control.

Project #1: Dungeon Maze (CONTINUED)

20

Phase 4: More Levels!
Now we will create more levels for our maze game, and
write code that allows us to advance through these levels!

1. Painting more mazes: Create two more mazes using the same process that you used to
create the original one. Keep your mazes’ entrance and exit in the same place. Try to make
these ones more challenging, but not impossible!

Backdrop management: Organize
your backdrops so you have three
backdrops named “backdrop1”,
“backdrop2” and ” backdrop3”, with
“backdrop1” being the easiest and
“backdrop3” being the hardest.
This may involve renaming some
backdrops and deleting empty ones.

2.

Project #1: Dungeon Maze (CONTINUED)

21

Set the goal: Now we will write code that
allows our player to pass to the next level
when the mouse reaches the cheesy puffs.
First, add another “if_ then_” block to our
“forever” loop. This time we will use the
“touching _” block from sensing as the
condition. Use the drop down arrow inside the
“touching_” block to select the cheesy puffs.

Set starting backdrop: Now that we have multiple
backdrops, we need to make sure we start on the correct
one when the game begins. To do this, go to looks and add
a “switch backdrop to backdrop1” block immediately under
the “when green flag clicked” block. Use the drop down
arrow to select the proper backdrop inside this block if
necessary.

Test it out! Complete the first level
of your maze. Does the second
level appear after you beat the
first? Can you advance to the third
from the second? Now is another
good time to save your project.

We need two things to happen when the
mouse reaches the cheesy puffs: We need
to advance to the next level, and we need
to send the mouse back to the beginning
of the maze. We will reset the mouse with
the same blocks we used earlier, and add
an “next backdrop” block from looks to
advance to the next backdrop.

3.

4.

5.

Project #1: Dungeon Maze (CONTINUED)

22

Phase 5: Finishing Touches
Now we will add some finishing touches to our game.

Phase 6: Bonus Challenge
For a bonus challenge, you can add an enemy to the dungeon maze.

1. Victory screen: Create a new backdrop to act as your victory screen!
This backdrop will appear when the player has beaten all of the levels.
Call it “backdrop4”. Customize this backdrop however you like!

1. Choose a sprite: Start by adding a new sprite to be
your enemy. I will use the sprite “Cat 2” for this.

Stop the game: Add the following two block
combination to your code. This will stop everything
when you reach the end of the game. “When
backdrop switches to _” can be found in events,
and “stop all” in control. Switch the backdrop
referenced in the “when backdrop switches”
block if necessary.

2.

Project #1: Dungeon Maze (CONTINUED)

23

Program behavior: Program behaviors for the enemy sprite. Use the “when backdrop
switches to_ ” block from events to program different behaviors for different backdrops.
Here I am using “show” and “hide” blocks from looks to make the sprite only appear on
some levels. On levels where the cat appears, I am using “glide _ secs to x_ y_” blocks
inside of a “forever” loop to program automatic movement for the sprite. You will need to
decide where your enemy sprite moves depending on the layout of your maze!

Add a rule: Lastly we will
modify the rules so running
into the cat sends the player
back to the beginning. To do
this, we will use an “or” block
from operators and another
“touching_” block to add a
second condition to the “if_
then_” blocks that checks
to see if we’re touching the
walls.

2.

3.

Project #1: Dungeon Maze (CONTINUED)

24

Playtest
Now that your project is in a playable state, spend some time
playtesting it and letting others play it. Here are some questions
to guide you while you playtest:
• Does the game work the way you want it to?
• Are there any unexpected behaviors in the game?
• Is the game fun to play?
• Can you actually reach/beat every level?
• Does the game feel too easy, too hard, or just right?
• What could be added to make the game more challenging?
• What could be added to make the game more fun?
• Is there anything confusing or unnecessary that should be removed?

Another way to go about playtesting is to use the acronym T.A.G.
TAG stands for:

Tell something you like.
Ask a question.
Give a suggestion for feedback.

This can be a helpful prompt for those playtesting and giving
feedback on your game, or for you as you playtest other’s games.

Customize and Iterate
Take your feedback from playtesting and think of ways to
improve and customize your project! Here are some ideas on
how to take this project further:

• Change which sprites you are using
• Add more levels to your game
• Add some collectable objects to the game
• Add more enemies or obstacles
• Add a time limit for completing each level
• Improve the detail or design of the backdrops

Project #1: Dungeon Maze (CONTINUED)

25

Project #2:
Don’t Drop the Donuts
For our second
project, we will
make a game
where the
player must
catch falling
objects.
You can see
(and remix) my
version here.

New Blocks Used

From motion
Changes the Y position of a sprite by the
specified amount

From motion
Sets the X position of a sprite

From motion
Sets the Y position of a sprite

mailto:https://scratch.mit.edu/projects/462623906/?subject=

26

From motion
Rotates a sprite by the specified amount

From motion
A sprite’s current Y position

From operators
Compares two numbers. Condition is met
if the first number is less than the second.

From operators
Picks a random number between the two
specified values.

From sensing
The current X position of the mouse

From control
Waits for the specified amount of time

From variables
Sets the value of a variable

From variables
Changes the value of a variable

New Blocks Used (CONTINUED)

Project #2: Don’t Drop the Donuts (CONTINUED)

27

Phase 1: Project Setup
In this first phase, we will open a new project, and pick our backdrop and sprites.

1. New project: Open a new Scratch project by going to scratch.mit.edu, signing into your account,
and clicking “Create” in the top left corner. Add a player sprite and a backdrop to your project.

• For the player sprite, any animal, person, or character will work well.

• For the backdrop, something simple and not too busy will work best.

Falling object: Add another sprite to be
your falling object. I will use the donut
sprite, but any food or other object
will work well. Change the size of your
falling object to 40 in the size field of
the sprite menu.

2.

Project #2: Don’t Drop the Donuts (CONTINUED)

28

Phase 2: Program Falling Object
Now we will write code for the falling object.

1. Forever Falling: Select
the falling object sprite and
write the following code:

Remember a sprite’s Y
coordinate is it’s vertical
position, so changing Y by -10
will make the sprite appear
to fall. Click the green flag to
see if the object falls to the
ground.

Send it back up: Now we will add an “if_then_”
block to send the sprite back up to the top of
the stage when it reaches the bottom. This will
involve using the “_<_” block from operators
and the “Y position” block from motion. We
can use these blocks to check if the sprite has
reached the bottom of the stage. When it does,
we will use a “set Y to _” block to send it back
to the top of the screen.

Randomize The Position: We also want to
randomize the X position so the sprite doesn’t
fall in the same place every time. To do this
we will use a “pick random _ to _” block from
operators and a “set x to _” block. We will add
this right after the “set y to _” block.

2.

3.

Try it out! Your sprite should now fall to the
bottom of the screen, reappear at the top of
the screen, and continue to fall.

Now your sprite should fall to the bottom,
reappear at the top of the screen at a random
x position on the top of the screen, and
continue to fall.

Project #2: Don’t Drop the Donuts (CONTINUED)

29

Make it spin: Just for fun, add a “turn _
degrees” block (either direction) from
motion to make your falling item spin. Do
this inside your “forever” loop but outside
the “if_ then_” statement.

Making movement: Now we will program
movement for our player. This time we will
use the mouse to control our layer. We will
use a “forever” loop, a “set x to _” block,
and the “mouse x” block from sensing.

4.

2.

Phase 3: Player Controls
Now we will program movement for the player sprite. In our last project, we
programmed movement that was controlled using our keyboard keys. In this
project, we will program movement controlled by the mouse.

1. Set starting position: Place your player
sprite where you want them to start.
Then use a “when green flag clicked”
and a “go to x_ y_” block to set the
starting position for your sprite.

Try it out! Does your sprite follow your mouse?
Save your game before moving on!

Project #2: Don’t Drop the Donuts (CONTINUED)

30

Phase 4: Keeping Score
In order to keep score, we will need to use variables. Variables
allow a program to store and keep track of a number.

1. Make a variable: Go to the
variables category in the
code block palette and click
on “Make a Variable”. Call
your variable “Score” and
click OK.

Reset the score: We need to make sure
that when the game starts, our score
is set to 0. First, return to the falling
object’s code. Take a “set my variable
to 0” block from variables and use the
drop down arrow on the block to change
“my variable” to “Score”. Add this block
to the top of the falling object’s code,
directly under the “when green flag
clicked” block.

Set the rules: Now it’s time to program the
rules for this game. Here are the two main
rules:

• The player will earn points by catching
falling objects

• The player’s score will go back to 0 when
an object is missed

To make the score reset to 0, we can simply
add another “set score to 0” block inside the
existing “if_ then_” statement.

2. 3.

Project #2: Don’t Drop the Donuts (CONTINUED)

31

Scoring points: To let the player catch falling
objects to score points, we need to add another
“if_ then_” block with a “touching _” block
from sensing. When the player catches a
falling object, we need to send the object back
to the top of the screen (the same way we
do when it hits the ground), and add 1 to the
score, using a “change score by 1” block from
variables.

Try it out! Test out your game. Watch the score
as you catch (and miss) falling objects. Does
everything work the way you want it to? Save
your game before moving on!

Speed it up: Right now, this
game is probably very easy.
We are going to program the
game to get harder as the
player scores more points.
To make the game harder,
we will make the objects fall
faster.

The -10 in the “change y by
-10” block determines how
fast our objects fall.

Phase 5: Finishing Touches

4.

1. We will need to do some math
to make our speed change
according to our score. To do
this, we will use a subtraction
block from operators and the
“Score” block from variables.

Project #2: Don’t Drop the Donuts (CONTINUED)

32

Add a top score: Lastly, we are going to add a way to keep track of the top score.
Go to variables and make another new variable, this one called “Top Score”.

2.

Next, write the following code to update
your top score every time the current
score exceeds it.

Then, add this
code to the
bottom of the
falling object’s
“forever” loop.
Also, reset Top
Score to 0 at
the start of our
game.

Phase 6: Bonus Challenge
For a bonus challenge, try adding a second falling
object that the player should avoid to your game.

1. Add a new sprite: Add a new sprite to your
project. I will use the crab sprite for this. Set
the size of this sprite to 50.

Project #2: Don’t Drop the Donuts (CONTINUED)

33

Code it: Now will program this sprite.
This code be look similar to our falling
object code, but with a few differences.
This sprite will “wait 5 seconds” after
each time it falls, and will use “hide” and
“show” blocks to make it invisible while
waiting. This sprite will also reset our
score to 0 if it is caught by our player.

2. Playtest
Now that your project is in a playable state,
spend some time playtesting it and letting
others play it. Here are some questions to guide
you while you playtest:

• Does the game work the way you want it to?
• Are there any unexpected behaviors in the

game?
• Is the game fun to play?
• Does the game feel too easy, too hard, or

just right?
• What could be added to make the game

more challenging?
• What could be added to make the game

more fun?
• Is there anything confusing or unnecessary

that should be removed?

Customize and Iterate
Take your feedback from playtesting and think
of ways to improve and customize your project!
Here are some ideas on how to take this project
further:

• Change which sprites you are using

• Add sounds to your game

• Add more types of falling objects

• Change the movement controls

• Add a time limit to the game

• Use backdrop changes to show level
changes or changes in difficulty

• Improve the detail or design of the
backdrops

Project #2: Don’t Drop the Donuts (CONTINUED)

34

For our third
project, we will
create a version of
a video game boss
battle. My battle
will be one between
a wizard, controlled
by the player, and
an enemy fire-
breathing dragon.
You can see (and
remix) my version
here.

Project #3: Boss Battle

New Blocks Used

From motion
Rotates the sprite to point towards the
mouse pointer or a sprite

From motion
Places the sprite at a random position,
another sprite’s position, or the mouse
pointer

From looks
Sets a graphic effect for a sprite. Click the
drop down arrow to see different available
effects

mailto:https://scratch.mit.edu/projects/463786340/?subject=

35

From looks
Clears all graphic effects

From control
Triggers one of two outcomes depending on
if the given condition is met

From control
Repeats code inside loop until a condition
is met

From events
Receives broadcasted messages from
other sprites and triggers attached blocks

From events
Broadcasts a message to be received by
other sprites

From sensing
Checks if specified key is pressed

From sensing
Allows sprite to access many types of
information about other sprites or stage

New Blocks Used (CONTINUED)

Project #3: Boss Battle (CONTINUED)

36

Phase 1: Project Setup
In this first phase, we will open a new project, and pick our backdrop and sprites.

1. Add your sprites: Open a new Scratch project by going to scratch.mit.edu, signing into
your account, and clicking “Create” in the top left corner.Add a player sprite and an enemy
sprite to your project. I am using the wizard for my player, and the dragon for my enemy.
Adjust your sprites to the size you want.

Add a backdrop: Add a backdrop to your project. 2.

Project #3: Boss Battle (CONTINUED)

mailto:https://scratch.mit.edu/?subject=

37

Phase 2: Player Movement
Now we will program movement for our player. We will learn a new and
improved way to control a player using the keyboard keys.

1. If/then Movement: In our first project, we
used “when key _ pressed” event blocks to
trigger our movement blocks. This works,
but creates movement that is not very
responsive or smooth. In this project, we
will use “if_ then_” blocks with the “key
_ pressed?” block from sensing to create
smoother movement. We will use the same
“point in direction _” blocks and “move
10 steps” blocks that we’ve used for our
movement in the past.

Two directions: Add another “if_ then_”
loop to program movement to the left.

4.

Two directions: Add another “if_ then_”
loop to program movement to the left.

3.

Test your code by clicking on the green flag and using your arrow keys to move!
Make sure your project is saved.

Loop it: For this code to work properly, we
need to put it inside a “forever” loop to
constantly check if the key is being pressed.
We will start with a “when green flag
clicked.”

2.

Project #3: Boss Battle (CONTINUED)

38

Phase 3: Enemy Movement
Now we will program movement for our enemy sprite.

1. The Power of Randomness: In video games, randomness is
extremely important for programming unpredictable events and
behaviors, which are important for making games challenging and
fun. We will use the “pick random _ to _” block along with a “glide
1 secs to x_ y_” to program movement for our enemy sprite.

This code will send our sprite to a random X,Y position near the top
of the stage every second.

Loop it: We will place this block in a “forever” loop to repeat it.
We will again start with a “when green flag clicked”

Turn and face: Add a “point towards _” block to make the enemy face our player.

Try it out! Click the green flag and watch your enemy start to fly around!

2.

3.

Project #3: Boss Battle (CONTINUED)

39

Phase 4: Under Attack!
Now we will create a fire-ball attack for our enemy sprite!

1. Paint a new sprite: Hover over
the Choose a Sprite button and
click on the paint brush to open
the paint menu.

Paint your sprite: Use the paint
tool to paint a fireball sprite!
Shrink your sprite using the
size field in the sprite menu if
necessary.

2.

Project #3: Boss Battle (CONTINUED)

40

Program the Fireball: The fireball
needs to start at the enemy sprite.
Let’s start with a “when green flag
clicked”, a “forever” loop and a “go
to _” block to do this. Select your
enemy sprite in the “go to” block.

Press the green flag to try it out. This
will make the fireball appear at the
center of the enemy sprite. We’ll fix it
and make it appear at the front of our
sprite in the next step.

Adjust the position: We need to move our
fireball to the front of our enemy sprite.
Where we place it will be determined by
which way our enemy sprite is facing, which
we can determine using the following block
from sensing:

Now we will need to use a “_>_” block inside an “if _ then _ else _”
block to position our fireball depending on which direction the enemy
sprite is facing. Use “change x by _” and “change y by _” blocks to
place the fireball sprite where you want to. Note the use of positive
and negative values in the “change x by _” blocks.

Now the fireball stays at the front of the enemy sprite where-ever it goes.

3.

4. This extremely useful block can be used
to get information about other sprites
or the stage. Select your enemy sprite
using the second dropdown, and then
“direction” using the first.

Project #3: Boss Battle (CONTINUED)

41

Aim, fire!: Now we will program the fireball
to aim and fly at our player sprite. We will
use a “point towards _” block, and a “move
10 steps” block inside of a loop. We will use
a “repeat until_” loop to keep the fireball
moving until it’s Y position is too low.

Try it out! Press the green flag and watch
fireballs rain down from our enemy sprite
onto our player sprite.

Paint a new sprite: Hover over the Choose a
Sprite button and click on the paint brush to
open the paint menu. Paint a new sprite to be
your player’s attack.

5.

1.

Phase 5: Fight Back!
Now we are going to create a lighting-bolt attack for our player sprite.

Project #3: Boss Battle (CONTINUED)

42

Make it fly: We will start with code that
is similar to what we just wrote for the
lightning fireball. The lightning bolt will
start at the player sprite, and fly upward
until it nears the top of the stage.

Create variables: Go to variables and
create two new variables: “Enemy Health”
and “Player Health”.

Next we’ll add a “wait until _” block and
some “hide”/“show” blocks to make the
lighting bolts only shoot and show when
the spacebar is pressed.

2.

1.

3.

Phase 6: Health
Now we will create variables for player health
and enemy health, and program these to
interact with our attacks.

Project #3: Boss Battle (CONTINUED)

43

Set starting health: Go to the player
sprite and add a “set Player Health to
10” to the start of the code, underneath
the “when green flag clicked”.

Enemy Health: Do the same for
the enemy sprite, this time setting
“Enemy Health” to 10.

Program Player Health: Go to the fireball
sprite’s code. Add an “if_ then_” block to
decrease the player’s health and then “hide”
the fireball if the fireball touches the player.
Make sure you add this inside the “repeat
until” loop. Also add a “show” block to make
the fireball reappears when it starts moving.

2.

3.

4.

Project #3: Boss Battle (CONTINUED)

44

Enemy Health: Do the same for
the enemy sprite, this time setting
“Enemy Health” to 10.

Program Enemy Health: Go to the lightning
bolt sprite’s code. Add an “if_ then_” block to
decrease the enemy’s health and then “hide”
the lighting if the bolt touches the enemy.
Make sure you add this inside the “repeat
until” loop.

5. 6.

Project #3: Boss Battle (CONTINUED)

45

Phase 7: Finishing Touches
Now we will program the end of our boss battle, which will occur when
either sprite runs out of health.

Create banner sprite: We are going to create a new sprite to display either “you win”
or “game over” when the game ends. To do this, paint a new sprite, and create two
costumes for it- one for each outcome. Title the costumes “win” and “lose”.

Reaching the end: Write
the following code to switch
to the appropriate costume
and display the sprite when
either the player or enemy
are out of health.

Try it out! Now that all of
the pieces of your game are
in place, try it out and see if
you can defeat the enemy!

1.

2. 3.

Project #3: Boss Battle (CONTINUED)

46

Phase 8: Bonus Challenge:
For a bonus challenge, create some animations for our player and enemy
sprite when they get hit by an attack.

Broadcast: “Broadcast” and
“when I receive_” blocks
from events allow us an easy
way to trigger events across
sprites. Send a message
with a “broadcast” block
in one sprite, and trigger
other blocks with a “when
I receive” block in another
sprite. Add a “broadcast”
block to the lightning bolt
script just after the “change
Enemy Health by -1” block.
Broadcast a new message
called “Enemy hit” by clicking
on the dropdown arrow in
the block, clicking “new
message”, and naming the
message. Then do the same
in the fireball sprite with a
message called “Player hit”

Receive the broadcast: In both the player and enemy sprites, use a “when i receive _”
to receive the proper message and apply graphic effects, costume changes, or anything
else! Use a “wait _ secs” block and a “clear graphic effects” block from looks set your
sprite back to normal at the end of the animation.

1.

2.

Project #3: Boss Battle (CONTINUED)

47

Playtest
Now that your project is in a playable state, spend some time playtesting it
and letting others play it. Here are some questions to guide you while you
playtest:

• Does the game work the way you want it to?
• Are there any unexpected behaviors in the game?
• Is the game fun to play?
• Does the game feel too easy, too hard, or just right?
• What could be added to make the game more challenging?
• What could be added to make the game more fun?
• Is there anything confusing or unnecessary that should be removed?

Customize and Iterate
Take your feedback from playtesting and think of ways to improve and
customize your project! Here are some ideas on how to take this project
further:

Change which sprites you are using:

• Add sounds to your game
• Add more types of attacks the player/enemy
• Change the movement controls for the player
• Change the movement program for the enemy
• Add levels that precede this boss battle
• Improve the detail or design of the backdrops

Project #3: Boss Battle (CONTINUED)

48

Now that you’ve built three games in Scratch (and from scratch!), it’s time to use your
new skills to build a game for impact.

What is an Impact Game?

Impact games are games that deal with real issues and encourage players to learn and
take action on important issues in the real world! These can be issues big and small.

Steps:
1. Choose your issue: What is the real world issue or challenge that you will tackle

with your impact game? It can be something relating to your local community, or
something that affects the whole world.

2. Dive into your issue: Who is impacted by your issue? What causes it to occur?
Where and when does it happen? What are possible solutions to the issue? What
information should the public know about this issue and its possible solutions?

3. Brainstorm your game: Can you think of a connection between your chosen issue
and any games you’ve played or made? Decide what type of impact game you’re
going to make. Your game can be built off of one of the games we’ve already made,
something you create from scratch, or a remix of an existing project.

4. Plan your game: What sprites are you going to need? What will each sprite do?
What backdrops will you need? What will the player’s experience be like? Make a
plan for making your project before you start programming.

5. Make your game: Get into Scratch and build your game!

6. Playtesting: Let someone else play your game and get them to give you feedback.
Look for bugs or unexpected behaviors in the game.

7. Improve: Put your playtesting feedback into action by fixing bugs and improving
your game.

Final Project: Build
your own Impact Game!

